12.12.2023

За что отвечает днк. Днк-анализ как рутинное исследование, или о чем способна рассказать ваша генетическая карта. Строение нуклеиновых кислот


Из школьного курса биологии всем известно о том, что ДНК – это «банк данных», в котором хранится информация обо всем живом. Именно ДНК делает возможной передачу данных о развитии и функционировании живых организмов при их размножении. Дезоксирибонуклеиновая кислота – основа всего живого. Именно благодаря этой молекуле, все организмы способны сохранять свою популяцию. А что Вы знаете о человеческой ДНК?

В 1869 году мир узнал о существовании ДНК: это открытие сделал Иоганн Фридрих Мишер. А еще через почти 100 лет (1953 году) два выдающихся ученых сделали сенсационное открытие: ДНК состоит из двойной спирали. Этими учеными были Френсис Крик и Джеймс Уотсон. С тех пор, вот уже более 50 лет, ученые всего мира пытаются раскрыть все тайны ДНК.

ДНК человека – загадка раскрыта:

– ДНК всех людей на планете на 99,9 % - идентична, и только на 0,1% - уникальна. Именно этот 0,1 % влияет на то, кто мы и какие мы. Иногда так случается, что это значение (0,1%) проявляет себя очень неожиданным образом: рождаются дети, похожие не на родителей, а на прабабушку или прадеда одного из родителей, а иногда проявляются еще более дальние предки.

– Мы на 30% салат и на 50% банан! И это действительно так: ДНК каждого из нас, не зависимо от возраста, пола, цвета кожи и других признаков, идентично с ДНК листьев салата и бананом на 30 и 50 процентов соответственно.

– Эритроциты (красные кровяные тельца) – единственные клетки, в которых отсутствует ДНК.

– В ДНК человека 80 тыс. генов, а 200 из них унаследовано от бактерии.

– Очень редко на свет появляются люди, у которых не 1, а 2 набора ДНК. Таких людей называют химерами, в их организме органы имеют разные ДНК.

– У человека всего на 2 хромосомы меньше, чем у шимпанзе.

– У генетического кода человека 2 значения. Ранее считалось, что значение 1, но американский ученый Джон Стаматойаннопулос вместе со своей командой в 2013 году открыл второе значение. Благодаря этому открытию западная медицина начала развиваться в направлении изучения генома человека, что в дальнейшем позволит проводить «генетическое» лечение.

– В космосе есть «Диск бессмертия», на котором хранятся оцифрованные ДНК некоторых выдающихся личностей.

– На нашей планете есть живые организмы, чье ДНК при наиболее благоприятных условиях жизни могло бы обеспечить им бессмертие. Но человек к их числу не относится.

И это далеко не все загадки маленькой молекулы, без которой жизнь на Земле была бы невозможной.

Новый взгляд на ДНК

ДНК для большинства из нас представляет глубокую тайну. Мы слышим это слово, вроде бы понимаем его значение, но даже не представляем себе, насколько это сложная штука и зачем она, собственно, нужна. Итак, давайте попробуем вместе в этом разобраться. Сначала поговорим о том, чему нас учили в школе, а затем о том, чему не учили.

ДНК (дезоксирибонуклеиновая кислота) - это главная программа человека. С химической точки зрения это очень длинная полимерная молекула, имеющая вид двух цепочек, спирально закручивающихся вокруг друг друга. Каждая цепь состоит из повторяющихся «строительных блоков», называемых нуклеотидами. Каждый нуклеотид состоит из сахара (дезоксирибозы), фосфатной группы и собственно азотистого основания. Связи между нуклеотидами в цепи образуются за счет дезоксирибозы и фосфатной группы. А азотистые основания обеспечивают связь между двумя спиральными цепями. То есть собственно создание живой материи. Основания бывают четырех видов. И именно их последовательность формирует генетический код.

Генетический код Человека содержит в себе около трех миллиардов пар оснований ДНК и около 23 000 генов (по последним подсчетам), которые отвечают за все свойственные нам признаки и качества. Сюда входит все, что мы получаем от природы, а также то, что мы наследуем от родителей и их родителей. Ген - это единица наследственности живого организма. В нем может содержаться информация о цвете глаз, о том, как создать почку, и о наследственных заболеваниях, таких как болезнь Альцгеймера. Так что наследственность - это не только качества родителей, но и общие качества человека. Можно сказать, что гены содержат все, что в нас есть человеческого, вместе с уникальными особенностями, унаследованными от родителей. Возможно, вы слышали также об РНК (рибонуклеиновой кислоте). Она участвует в процессе транскрипции, с которого фактически начинается производство белков и управление ими. ДНК - это матрица, на которой создается РНК, и программа, которой следует этот процесс.

Слушайте внимательно: эту крошечную молекулу в виде двойной спирали можно увидеть только в очень мощный электронный микроскоп. Но она состоит из трех миллиардов частей! Можете себе представить, насколько малы эти части? Мы, по сути, видим лишь форму ДНК, отрытую Уотсоном и Криком в Англии в 1953 году на основании рентгеноструктурных данных, полученных Розалинд Франклин. <…>

Потребовалось еще 43 года, прежде чем в феврале 2001 года ученые смогли нарисовать структуру всей молекулы ДНК. <…>

Затем началась настоящая работа, ведь исследование структуры показало лишь общее химическое строение ДНК. Представьте, что это буквы в гигантской книге. Теперь ученые знали каждую букву, но понятия не имели, что это за язык! Им необходимо было разгадать язык, чтобы увидеть всю картину, понять слова в книге и найти гены. Именно тогда они обнаружили, что дело принимает неожиданный оборот. Лучшие ученые и мощнейшие компьютеры страны изо всех сил старались найти коды, которые ожидали увидеть в химической структуре генома человека.

Мы мыслим трехмерно. С этим ничего не поделаешь. Такова наша реальность, и нельзя надеяться, что мы избежим этого. Но часто это мешает нам видеть большую картину. Наука сейчас начинает громогласно заявлять, что Вселенная и все находящееся в ней - многомерны. Так что рано или поздно нам придется изобрести математику, которая смогла бы соответствовать такой модели, а также открыть новые физические законы и научиться более широкому мышлению. А пока что ученые делают очень серьезные предположения о том, что геном человека линеен и вся генетическая структура человека заключена в трех миллиардах «букв» ДНК. Но это не так. <…>

Вопреки всей логике, ученые не смогли найти коды, хотя абсолютно точно знали, что они там есть. Они использовали лучшие современные компьютеры, способные взламывать коды, в поисках той симметрии, которую порождает любой язык. И они нашли ее. Находка наверняка сразила их наповал, и в то же время подбросила им величайшую биологическую загадку века.

Из всей химической структуры сложнейшего генома Человека лишь 4% несут в себе код! Только кодирующая белок ДНК содержит в себе четкий код для производства генов, и его присутствие там было вполне очевидно. Это настолько трехмерно, что буквально можно было увидеть отметки «старт» и «стоп» в последовательности генов! Как и современные компьютерные коды, химия подстраивалась под наши ожидания, но лишь малая часть генома Человека участвовала в производстве 23 000 генов человеческого тела. Все остальное находилось там как бы «ни для чего».

Позвольте привести вам аналогию подобного разочарования. Над нами появляется летающая тарелка. Она проделывает удивительные трюки - зависает в воздухе, игнорирует гравитацию и ведет себя так, как мы и ожидаем от летающей тарелки. Затем она приземляется. Мы приближаемся и понимаем, что внутри никого нет. Видимо, это просто робот-зонд, посланный на Землю. Внезапно верхняя часть тарелки поднимается, приглашая лучших ученых взглянуть на принципы ее работы. Мы очень возбуждены, понимая, что близки к разгадке неких тайн. Мы вот-вот откроем новую физику! Мы начинаем искать двигатель, и нас ожидает сюрприз: двигательный отсек доверху набит каким-то мусором! Нет, пожалуй, это скорее похоже на пенопластовые гранулы, которые у нас засыпают в качестве наполнителя в упаковки с посудой. Эти гранулы явно связаны друг с другом, какая-то их часть даже шевелится, но они ничего не делают. В этом материале не видно никакой структуры; он просто заполняет пространство. Вы раскапываете «наполнитель» лопатой, выбрасываете гранулы ведро за ведром и наконец находите крошечный блестящий предмет, из которого выходят какие-то провода. Очевидно, что этот предмет и есть двигатель, сердце корабля. Такой маленький! Помещается в ладонь, а управляет всем! Вы пытаетесь его запустить. И тут выясняется, что без «наполнителя» летающая тарелка не хочет летать. Вы засыпаете гранулы обратно - и тарелка снова летает! Так что, получается, «наполнитель» все-таки что-то делает? Или нет? Как может наполнитель что-то делать? Ошибка понятна. Мы ожидали увидеть двигатель - нечто сверкающее, опутанное проводами, линейное и завершенное по своей структуре, - и мы нашли это. То, что показалось нам «наполнителем», «упаковкой», мы тут же выбросили. Вы понимаете, в чем оплошность и в чем метафора?

Получался анекдот. ДНК состоит из трех миллиардов частей, большая часть которых ничего не делает! Лишь четыре крошечных процента выполняют всю работу! Что за ерунда! Мы знаем, что природа очень рациональна. Мы можем наблюдать за эволюцией живых существ даже в течение одной нашей жизни, и мы понимаем, насколько природа целесообразна. Если рыбы оказываются запертыми в подземной пещере, то через десять лет, или около того, у них исчезают глаза. Природа вычеркивает все, в чем нет необходимости, и мы видим это повсюду. Однако 96% нашей ДНК являются просто мусором! Мы, вершина эволюции, на 96% состоим из мусора? Это противоречит всему, что мы наблюдаем в природе, однако именно так и выходило . Части ДНК, не кодирующие белок, даже лучшими умами были объявлены «мусором». Участки, не кодирующие белок, были случайными, не обладали ни симметрией, ни видимой целью и казались бесполезными.

Знакомьтесь: нетрехмерные мыслители

Попробуем подойти к нашей летающей тарелке с новыми идеями. Возможно, этот на вид хаотичный «наполнитель» вовсе не является частью двигателя. Может быть, это карта! В конце концов, корабль должен знать, куда направляется. Затем вы думаете, что это какой-то иной тип карты. Может быть, в квантовом состоянии кораблю нужна квантовая карта? Что это могло бы быть? Что должно быть нечто такое, что позволило бы ему существовать в линейном мире, но могло бы отдавать инструкции крошечному блестящему двигателю, чтобы тот контролировал судно в трех измерениях. В данном случае мы знаем, что у корабля есть многомерные характеристики, потому что он может контролировать свою массу. Мы также знаем из нашей квантовой физики, что, когда мы переходим в многомерный мир, время и пространство, какими мы их знаем, перестают существовать. Эти два понятия заменяются потенциалами и полностью нелинейным и запутанным обилием «событийных правил», которые в третьем измерении имеют для нас очень мало смысла. Таким образом, странный и хаотичный «наполнитель» вовсе не является неупорядоченным - просто он выглядит таковым для трехмерных созданий (вас, меня и ученых)! Он должен быть именно там, где и находится, чтобы у двигателя была возможность перемещать корабль. Можно сказать, что «наполнитель» - это модификатор двигателя, и он должен присутствовать в значительных количествах, потому что ему очень много нужно «сказать» двигателю о том, как двигаться многомерным способом.

Годами мы мирились с выражением «мусорная ДНК». Однако вдруг мы начали мыслить иначе. «Что, если, - сказал кто-то, - в мусоре нет кода, потому что его там и не должно быть? Что, если эти 96% ДНК каким-то образом содержат нелинейные квантовые правила, которые руководят закодированными частями?» Это совершенно новая и спорная концепция - но она, по крайней мере, выходит за пределы ограниченной трехмерной логики!

Вот сообщение из Калифорнийского университета в Сан-Диего от 13 июля 2007 года, переданное в новостях «Си-Би-Эс»:

Так называемая «мусорная ДНК» - 96% генома человека, кажущиеся бесполезными, - может играть более важную роль, чем предполагает ее название, утверждают американские ученые. Международная группа ученых обнаружила, что какая-то часть «мусорной» ДНК может служить для создания рамок, помогающих должным образом организовать остальные 4%. «Некоторую часть мусорной ДНК можно считать знаками препинания, запятыми и точками, помогающими понять смысл закодированных участков генома», - говорит соавтор этой теории Виктория Луняк, научный сотрудник КУСД.

Я думаю, что мы начинаем видеть многомерный аспект своей биологии, который, очевидно, огромен! Что, если 96% нашей ДНК - набор инструкций для остальных 4%? Тогда эта часть совсем не хаотична, она просто кажется таковой трехмерному мышлению. Могут ли знаки препинания казаться буквами алфавита? Нет. Тогда что это? Обладают ли они симметрией? Произносятся ли они как-нибудь? Нет. Если вы посмотрите на знаки препинания в нашем языке, то может показаться, что они расставлены в случайном порядке. Если бы вы, например, посмотрели на эту страницу, ничего не зная о языке и о его устройстве, то знаки препинания показались бы вам бессмысленными. Они не обладают симметрией. Если вы пропустите эту страницу через суперкомпьютер, он в конечном итоге определит слова и их вероятный смысл, но не знаки препинания.

Подумайте об этом. Двигатель, который мы искали в летающей тарелке, действительно был там. Эта доля в 4%, кодирующая белок, служит «блестящим мотором». А «мусор» - это 96%, похожие на гранулированный наполнитель. Теперь мы подозреваем, что происходит нечто совершенно иное, и 96 % на самом деле могут оказаться многомерным шаблоном конструктора, а 4% - просто двигателем, который подчиняется его замыслу.

Разве это соотношение не кажется вам интересным? Согласно учению Крайона, лишь 8% ДНК находятся в третьем измерении, а 92% ДНК управляют остальной частью.

Возможно, мы становимся свидетелями постепенного признания того факта, что функции ДНК значительно отличаются от наших ожиданий и она - нечто более сложное, чем просто код, который можно считывать химически.

отрывки из книги Крайона и Ли Кэрролла, «Двенадцать слоёв ДНК»

Лишь малая часть людей знает как расшифровывается ДНК. Более того, большинство людей (и я не исключение) затрудняются прочитать полное название с первого раза. Хотите попробовать?

Дезоксирибонуклеиновая кислота.

Да уж, словечко не из самых приятных. Нуклеиновые кислоты, такие как дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК) являются химическими переносчиками генетической информации клеток. В клеточной ДНК зашифрована информация, которая будет определять какую роль будет выполнять эта клетка, контролировать её рост и деление, и направлять биосинтез ферментов и белков, необходимых для жизни клетки. В дополнении к нуклеиновым кислотам в «чистом» виде, существуют еще производные нуклеиновых кислот, как например АТФ, которые выполняют не менее важные роли. АТФ являются этакой денежной валютой в мире молекул, поскольку именно она затрачивается при синтезе каких-нибудь сложных соединений.

Нуклеиновые кислоты являются последним из четырех основных классов биологических молекул, о которых мы будем говорить. Возможно, каждый из вас слышал о такой загадочной молекуле ДНК, которая определяет все ваши физические особенности, но вряд ли многие из вас знают что это такое с химической точки зрения.

Так же как белки сделаны из маленьких частичек — аминокислот, нуклеиновые кислоты сделаны из нуклеотидов, соединенных в длинную цепь. Каждый нуклеотид состоит из трех основных частей: углевода, азотистого основания и остатка фосфорной кислоты. В РНК углеводом является рибоза (отсюда и название: рибонуклеиновая кислота), а в ДНК углеводом является производное рибозы, которые называется дезоксирибоза и отличается лишь тем, что в нем находится на один атом кислорода меньше (и отсюда же и название: дезоксирибонуклеиновая кислота). В ДНК содержится четыре основных азотистых основания: аденин, тимин, гуанин и цитозин. В РНК вместо тимина можно встретить довольно похожее основание, которое называется урацил.

И хоть ДНК и РНК похожи с химической точки зрения, они значительно отличаются по размерам. Молекулы ДНК огромны и содержат около 245 миллионов нуклеотидов, а их молекулярная масса достигает 75 миллиардов грамм на моль. Молекулы РНК в сравнении гораздо меньше, самые маленькие содержат 21 нуклеотид и обладают массой в 7000 грамм на моль.

Несмотря на то, что клетки мозга и клетки кожи обладают совершенно разной структурой и выполняют совершенно разные биологические функции, они обладают совершенно одинаковым генетическим кодом, т.е. одинаковыми молекулами ДНК. При этом, примерно любая человеческая ДНК содержит по 30% аденина и тимина, и по 20% гуанина и цитозина. Более того, феномен равенства количеств тимина и аденина, гуанина и цитозина не является уникальным для человеческого организма. Это повсеместное явление в природе. Но почему?

В 1953 году, Джеймс Уотсон и Фрэнсис Крик обнаружили истинную вторичную структуру молекулы ДНК. Согласно их модели, ДНК состоит из двух цепочек из нуклеотидов, которые сворачиваются в витки двойной спирали, также как винтовые лестницы. Две цепочки не идентичны, а комплементарны и удерживаются водородными связями. Каждый Аденин (А) связывается с Тимином (Т), а каждый Гуанин (G) связывается с Цитозином (С) и наоборот. То есть, каждый раз как в одной цепочке встречается А, в другой цепочке будет Т. Этот факт обьясняет то, что мы видим одинаковые количества А и Т, G и С в любых живых организмах.

В среднем, каждый виток спирали ДНК содержит около 10 пар оснований (нуклеотидов). Как можно заметить из рисунка: две нити ДНК переплетаются таким образом, что образуются две разных по размерам бороздки: большая (12А в ширину) и малая (6А в ширину), где 1 А в 10 миллиардов раз меньше метра. Большая бороздка немного глубже, и как мы видим на картинке, все азотистые основания складываются в хорошие такие параллельные линии. Все дело в том, что эти основания содержат шестичленные и пятичленные ароматические циклы, которые по форме являются шести- и пятиугольниками. Их называют ароматическими потому, что они а) плоские и б) содержат много двойных связей. Эти самые двойные связи и могут стабилизировать структуру ДНК если, например, две двойных связи с двух разных ароматических молекул находятся строго параллельно друг под другом. Именно так и происходит в реальной структуре и мы видим параллельно-лежащие молекулы и пространство между ними. Большое количество полициклических ароматических молекул может пролезать в эти пространства, или на научном языке интеркалировать. Многие канцерогены (вещества вызывающие рак) и лекарства от рака функционируют именно взаимодействуя с ДНК методом интеркаляции.

Генетическая информация организма хранится как последовательность нуклеотидов в цепочке ДНК. Все гены, которые определяют наш цвет глаз, наш цвет волос, наш цвет кожи, наши особенности, наш потенциальный рост, наши физические задатки — все это всего лишь последовательность четырех нуклеотидов А, Т, G и С. Ровно как все операционные системы — это лишь последовательности 0 и 1, точно так же ДНК это — последовательности четырех нуклеотидов.

Для того чтобы сохранять генетическую информацию и передавать её следующим поколениям должен существовать механизм для копирования ДНК. Чтобы использовать эту информацию, должен существовать механизм для расшифровки и использования этого кода. Хорошая новость заключается в том, что эти механизмы более-менее изучены.

Однажды, Фрэнсис Крик сформулировал центральную догму молекулярной биологии, которая гласит: функция ДНК заключается в хранении и передаче информации РНК, а функция РНК заключается в чтении, де|шифровке и использование информации из ДНК для создания белков. И хоть такой взгляд может казаться слишком упрощенным, он достаточно хорошо обобщает детали.

Существует три фундаментальных процесса:

  1. Репликация — процесс по которому создаются идентичные копии ДНК с целью передачи информации потомкам.
  2. Транскрипция — процесс по которому генетическая информация читается и переносится из ядра клетки к специальным станциям (рибосомам), где происходит синтез белка.
  3. Трансляция — сам процесс синтеза белка в специальных станциях.

Репликация ДНК — это реакция, катализируемая ферментами, которая начинается с частичного раскручивания двойной спирали в некоторых местах молекулы ДНК. Раскручивание происходит под действием фермента хеликаза (от английского хеликс — спираль), иными словами приходит фермент и разрывает парочку водородных связей между азотистыми основаниями, тем самым образуя некий пузырь и выворачивая азотистые основания навстречу окружающей среде. При этом, рядом спокойно плавают разные нуклеотиды в свободном виде, и мимо проходя, они подходят к азотистым основаниям ДНК и образуют с ними водородные связи. Таким образом, к каждой из старых двух цепочек ДНК приходят новые нуклеотиды и образуется две молекулы ДНК, каждая из которых содержит по цепочке от начальной молекулы. Нуклеотиды выстраиваются по принципу комплементарности, и поэтому две новые копии идентичны. Размах процесса репликации просто ошеломляет: каждое ядро любой нашей клетки содержит по две копии 22 х хромосом и еще две половые хромосомы (всего 46). Каждая хромосома стоит из одной большой молекулы ДНК, компактно свернутой вокруг специальных белков, называемых гистонами. В целом, оценивается что во всех 46 хромосомах находится в сумме около 3 миллиардов пар оснований, или 6 миллиардов нуклеотидов. Несмотря на такой размер генома человека, процесс занимает всего несколько часов, а средняя скорость репликации ДНК составляет 50 нуклеотидов в секунду.

Но разве не опасно копировать нашу ДНК так быстро? Случайная ошибка и в ДНК встанет неправильный нуклеотид, а это уже будет означать мутацию всего гена! Если бы мы сознательно копировали нашу ДНК, мы бы перепроверяли каждое основание по несколько раз, никто же не хочет случайных мутаций? Чтобы убедиться в отсутствии ошибок, клетки тоже делают повторное чтение цепочки ДНК и при необходимости исправляют ошибки. В итоге, ошибка может встречаться лишь один раз на каждые 10-100 миллиардов нуклеотидов. При этом, учитывая то, что молекулы ДНК копируются при каждом клеточном делении, а клетки делятся на протяжении всей жизни, всего 60 случайных ошибок (мутаций) передается следующему поколению.

После того как ДНК полностью копируется, образуются две новые копии. Так происходит с каждой хромосомой. В итоге, когда клетка делится на две новые, она передает одну копию одной клетке, а другую другой. Похожим образом происходит и образование половых клеток, которые участвуют в процессе передачи генетической информации от поколения к поколению.

Но как же организм может читать информацию зашифрованную в молекуле ДНК? Вернемся к РНК. Ранее мы говорили, что она структурно похожа наиДНК, но содержит рибозу вместо дезоксирибозы, и урацил вместо тимина. В нашем организме есть четыре основных типа РНК: матричная (информационная) — мРНК, рибосомальная — рРНК, транспортная — тРНК, и много маленьких РНК, также называемых функциональными РНК. Последние выполняют большое количество различных функций внутри клетки, например остановка процесса транскрипции или ускорение химической модификации других молекул РНК (катализ).

Генетическая информация в ДНК содержится в определенных сегментах, называемых генами, каждый из которых состоит из специфичной последовательности нуклеотидов, которые кодируют тот или иной белок. Да, да, именно так: все наши гены это просто последовательности нуклеотидов, которые кодируют синтез того или иного белка. При этом, по большей части ДНК хранится в свернутом виде, однако, в разных частях организма развернуты разные части ДНК, будто бы открыты разные страницы одной книги. Именно поэтому, клетки мозга, клетки крови, мышцы, железы обладают одной ДНК но такими разными функциями, которые определяются теми или иными белками в их составе.

Но как же происходит синтез белка? Во-первых, представим что есть определенная последовательность ДНК на цепочке №1, а цепочка ей комплементарная пусть будет №2. Во время транскрипции приходит специальный фермент и опять разворачивает небольшой участок молекулы ДНК. При этом, вместо того, чтобы позволять нуклеотидам присоединяться к обоим цепочкам, фермент удерживает первую (ее еще называют кодирующей), а рибонуклеотиды (именно те, которые входят в состав РНК) присоединяются ко второй цепочке (ее еще называют шаблонной), образуя матричную РНК, которая комплементарна цепочке №2, которая в свою очередь комплементарна цепочке №1. Надеюсь вы еще не запутались. В итоге, мРНК идентична кодирующей цепочке №1, за исключением лишь того, что вместо тимина везде находится урацил.

Очень часто в природе встречается следующая картина: последовательности ДНК, которые несут какой либо смысл (гены) начинаются в одном месте (называемом экзоном), но периодически прерываются бессмысленными вставками (в том плане, что они не кодируют белок) называемыми интронами. Финальная мРНК появляется только тогда, когда эти интроны вырезаются специальными ферментами, которые называются сплисеосомами. Да, пожалуй к этому моменту вы уже убедились в том, что биологи любят придумывать разные термины. Например, гены кукурузы, которые кодируют фермент триозофосфатизомеразу (отвечает за очень важную стадию в процессе метаболизма углеводов) содержат 8 некодирующих интронов, которые занимают примерно 70% от всей последовательности, и 9 кодирующих экзонов, которые занимают оставшиеся 30%.

Ну вот у нас есть мРНК, которая содержит кодирующую последовательность, но что дальше? мРНК приходит в рибосому (специальную станцию клетки для биосинтеза белка) и там встречается с другими ферментами, в том числе с разными тРНК. Каждые три нуклеотида в мРНК кодируют ту или иную аминокислоту. Например AAA кодирует аминокислоту лизин, a UGC кодирует цистеин. Но почему природа выбрала именно три нуклеотида, не больше и не меньше? Дело в том, что существует лишь 16 разных последовательностей из двух нуклеотидов (при выборе из A,T,G,C), а аминокислот как мы помним 20. Если добавить всего один нуклеотид, количество вариантов возрастает до 64, но теперь одна и та же аминокислота может кодироваться разными последовательностями ДНК. Возвращаясь к кодированию аминокислот: замени хоть один нуклеотид — и ты получишь другую аминокислоту. А вдруг она играла критичную роль? Без нее организм уже становится мутантом.

Что мы имеем в итоге? ДНК состоит из последовательностей нуклеотидов. Гены — последовательность нуклеотидов. Три таких нуклеотида называют кодоном и они являются такой буковкой в молекулярном мире. Каждая буковка кодируют какую-либо аминокислоту. Но что же значит кодируют? Дело в том, что существует 61 тРНК, у которых есть участки комплементарные кодонам, а каждая из этих тРНК несет на другом конце одну аминокислоту. В процессе биосинтеза белков, тРНК присоединяется к комплементарным участкам на мРНК, а ферменты соединяют аминокислоты, которые они несут с другой стороны. Но мы сказали что существует 64 кодона, а тРНК вроде как всего 61, где остальные 3? Остальные 3 тРНК останавливают процесс биосинтеза белка, т.е. в конце любой генетической последовательности есть кодон который говорит организму остановиться. Вот такой вот сложный механизм обеспечивает всю нашу генетическую разнообразность.

Молекула ДНК - это полинуклеотид, мономерными единицами которого служат четыре дезоксирибонуклеотида (дАМФ, дГМФ, дЦМФ и дТМФ). Соотношение и нуклеотидов в ДНК разных организмов различны. Кроме главных азотистых оснований в ДНК содержатся и другие дезоксирибонуклеотиды с минорными основаниями: 5-метилцитозин, 5-оксиметилцитозин, 6-метиламинопурин.

После того как появилась возможность использования метода рентгеновской кристаллографии для изучения биологических макромолекул и получения совершенных рентгенограмм, удалось выяснить молекулярную структуру ДНК. Указанный метод основан на том, что пучок параллельных рентгеновских лучей, падающих на кристаллическое скопление атомов, образует дифракционную картину, которая в основном зависит от атомной массы этих атомов, их расположения в пространстве. В 40-х годах прошлого века была выдвинута теория о трехмерной структуре молекулы ДНК. У. Астбюри доказал, что представляет собой стопку из наложенных один на другой плоских нуклеотидов.

Первичная структура молекулы ДНК

Под первичной структурой нуклеиновых кислот подразумевают последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК. Нуклеотиды связываются между собой при помощи фосфодиэфирных связей, которые образуются между ОН-группой в положении 5 дезоксирибозы одного нуклеотида и ОН-группой в положении 3 пентозы другого.

Биологические свойства нуклеиновых кислот определяются качественным соотношением и последовательностью нуклеотидов вдоль полинуклеотидной цепи.

Нуклеотидный состав ДНК у организмов разных специфичен и определяется отношением (Г + Ц)/(А + Т). С помощью коэффициента специфичности была определена степень гетерогенности нуклеотидного состава ДНК у организмов различного происхождения. Так, у высших растений и животных отношение (Г+Ц)/(А+Т) колеблется незначительно и имеет значение больше 1. Для микроорганизмов коэффициент специфичности изменяется в широких пределах — от 0,35 до 2,70. Вместе с тем данного биологического вида содержат ДНК одного и того же нуклеотидного состава, т. е. можно сказать, что по содержанию ГЦ-пар оснований ДНК одного вида идентичны.

Определение гетерогенности нуклеотидного состава ДНК по коэффициенту специфичности еще не дает информации о ее биологических свойствах. Последнее обусловлено различной последовательностью отдельных нуклеотидных участков в полинуклеотидной цепи. Это значит, что генетическая информация в молекулах ДНК закодирована в специфической последовательности ее мономерных единиц.

Молекула ДНК содержит нуклеотидные последовательности, предназначенные для инициации и терминации процессов синтеза синтеза РНК (транскрипция), (трансляция). Имеются нуклеотидные последовательности, которые служат для связывания специфических активирующих и ингибирующих регуляторных молекул, а также нуклеотидные последовательности, не несущие какой-либо генетической информации. Существуют также модифицированные области, которые защищают молекулу от действия нуклеаз.

Проблема нуклеотидной последовательности ДНК до настоящего времени полностью не разрешена. Определение нуклеотидной последовательности нуклеиновых кислот является трудоемкой процедурой, предусматривающей применение метода специфического нуклеазного расщепления молекул на отдельные фрагменты. На сегодняшний день полная нуклеотидная последовательность азотистых оснований установлена для большинства тРНК разного происхождения.

Молекула ДНК: вторичная структура

Уотсон и Крик спроектировали модель двойной спирали Согласно данной модели две полинуклеотидных цепи обвивают друг друга, при этом образуется своеобразная спираль.

Азотистые основания в них расположены внутри структуры, а фосфодиэфирный остов — снаружи.

Молекула ДНК: третичная структура

Линейная ДНК в клетке имеет форму вытянутой молекулы, она упакована в компактную структуру и занимает всего 1/5 объема клетки. Например, длина ДНК хромосомы человека достигает 8 см, а упакована так, что умещается в хромосоме с длиной 5 нм. Подобная укладка возможна благодаря наличию спирализованных структур ДНК. Из этого следует, что двухцепочечная спираль ДНК в пространстве может подвергаться дальнейшей укладке в определенную третичную структуру — суперспираль. Суперспиральная конформация ДНК характерна для хромосом высших организмов. Подобная третичная структура стабилизируется за счет с остатками аминокислот, входящих в состав тех белков, которые образуют нуклеопротеидный комплекс (хроматин). Следовательно, ДНК ассоциирована с белками главным образом основного характера — гистонами, а также кислыми белками и фосфопротеидами.

Все мы знаем, что облик человека, некоторые привычки и, даже, заболевания передаются по наследству. Вся эта информация о живом существе закодирована в генах. Так как же эти пресловутые гены выглядят, как они функционируют и где находятся?

Итак, носителем всех генов любого человека или животного является ДНК. Данное соединение было открыто в 1869 году Иоганном Фридрихом Мишером.Химически ДНК – это дезоксирибонуклеиновая кислота. Что же это означает? Каким образом эта кислота несет в себе генетический код всего живого на нашей планете?

Начнем с того, что рассмотрим, где располагается ДНК. В клетке человека имеется множество органоидов, которые выполняют различные функции. ДНК располагается в ядре. Ядро – это маленькая органелла, которая окружена специальной мембраной, и в которой хранится весь генетический материал – ДНК.

Каково строение молекулы ДНК?

Прежде всего, рассмотрим, что представляет собой ДНК. ДНК – это очень длинная молекула, состоящая из структурных элементов – нуклеотидов. Имеется 4 вида нуклеотидов – это аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Цепочка нуклеотидов схематически выглядит следующим образом: ГГААТЦТААГ.… Вот такая последовательность нуклеотидов и есть цепочка ДНК.

Впервые структура ДНК была расшифрована в 1953 году Джеймсом Уотсоном и Френсисом Криком.

В одной молекуле ДНК имеется две цепочки нуклеотидов, которые спирально закручены вокруг друг друга. Как же эти нуклеотидные цепочки держатся рядом и закручиваются в спираль? Данный феномен обусловлен свойством комплементарности. Комплементарность означает, что друг напротив друга в двух цепочках могут находиться только определенные нуклеотиды (комплементарные). Так, напротив аденина всегда стоит тимин, а напротив гуанина всегда только цитозин. Таким образом, гуанин комплементарен с цитозином, а аденин – с тимином.Такие пары нуклеотидов, стоящие напротив друг друга в разных цепочках также называются комплементарными.

Схематически можно изобразить следующим образом:

Г - Ц
Т - А
Т - А
Ц - Г

Эти комплементарные пары А - Т и Г - Ц образуют химическую связь между нуклеотидами пары, причем связьмежду Г и Ц более прочная чем между А и Т. Связь образуется строго между комплементарными основаниями, то есть образование связи между не комплементарными Г и А – невозможно.

«Упаковка» ДНК, как цепочка ДНК становится хромосомой?

Почему же эти нуклеотидные цепочки ДНК еще и закручиваются вокруг друг друга? Зачем это нужно? Дело в том, что количество нуклеотидов огромно и нужно очень много места, чтобы разместить такие длинные цепочки. По этой причине происходит спиральное закручивание двух нитей ДНК вокруг друга. Данное явление носит название спирализации. В результате спирализации цепочки ДНК укорачиваются в 5-6 раз.

Некоторые молекулы ДНК активно используются организмом, а другие используются редко. Такие редко используемые молекулы ДНК помимо спирализации подвергается еще более компактной «упаковке». Такая компактная упаковка называется суперспирализацией и укорачивает нить ДНК в 25-30 раз!

Как происходит упаковка спиралей ДНК?

Для суперспирализации используются гистоновые белки , которые имеют вид и структуру стержня или катушки для ниток. На эти «катушки» - гистоновые белки наматываются спирализованные нити ДНК. Таким образом, длинная нить становится очень компактно упакованной и занимает очень мало места.

При необходимости использовать ту или иную молекулу ДНК происходит процесс «раскручивания», то есть нить ДНК «сматывается» с «катушки» - гистонового белка (если была на нее накручена) и раскручивается из спирали в две параллельные цепи. А когда молекула ДНК находится в таком раскрученном состоянии, то с нее можно считать необходимую генетическую информацию. Причем считывание генетической информации происходит только с раскрученных нитей ДНК!

Совокупность суперспирализованных хромосом называется гетерохроматин , а хромосом, доступных для считывания информации – эухроматин .


Что такое гены, какова их связь с ДНК?

Теперь давайте рассмотрим, что же такое гены. Известно, что есть гены, определяющие группу крови, цвет глаз, волос, кожи и множество других свойств нашего организма. Ген – это строго определенный участок ДНК, состоящий из определенного количества нуклеотидов, расположенных в строго определенной комбинации. Расположение в строго определенном участке ДНК означает, что конкретному гену отведено его место, и поменять это место невозможно. Уместно провести такое сравнение: человек живет на определенной улице, в определенном доме и квартире, и самовольно человек не может переселиться в другой дом, квартиру или на другую улицу. Определенное количество нуклеотидов в гене означает, что каждый ген имеет конкретное число нуклеотидов и их не может стать больше или меньше. Например, ген, кодирующий выработку инсулина , состоит из 60 пар нуклеотидов; ген, кодирующий выработку гормона окситоцина – из 370 пар нуклеотидов.

Строгая последовательность нуклеотидов является уникальной для каждого гена и строго определенной. Например, последовательность ААТТААТА – это фрагмент гена, кодирующего выработку инсулина. Для того чтобы получить инсулин, используется именно такая последовательность, для получения, например, адреналина, используется другая комбинация нуклеотидов. Важно понимать, что только определенная комбинация нуклеотидов кодирует определенный «продукт» (адреналин, инсулин и т.д.). Такая вот уникальная комбинация определенного числа нуклеотидов, стоящая на «своем месте» - это и есть ген .

Помимо генов в цепи ДНК расположены, так называемые «некодирующие последовательности». Такие некодирующие последовательности нуклеотидов регулируют работу генов, помогают спирализации хромосом, отмечают точку начала и конца гена. Однако, на сегодняшний день, роль большинства некодирующих последовательностей остается невыясненной.

Что такое хромосома? Половые хромосомы

Совокупность генов индивидуума называется геномом. Естественно, весь геном невозможно уложить в одну ДНК. Геном разбит на 46 пар молекул ДНК. Одна пара молекул ДНК называется хромосома. Так вот именно этих хромосом у человека имеется 46 штук. Каждая хромосома несет строго определенный набор генов, например, в 18 хромосоме заложены гены, кодирующие цвет глаз и т.д.Хромосомы различаются друг от друга по длине и форме. Самые распространенные формы в виде Х или Y, но имеются также и другие. У человека имеются по две хромосомы одинаковой формы, которые называются парными (парами). В связи с такими различиями все парные хромосомы пронумерованы – их имеется 23 пары. Это означает, что имеется пара хромосом №1, пара №2, №3 и т.д. Каждый ген ответственный за определенный признак находится в одной и той же хромосоме. В современных руководствах для специалистов может указываться локализация гена, например, следующим образом: 22 хромосома, длинное плечо.

В чем заключаются различия хромосом?

Как же еще различаются между собой хромосомы? Что означает термин длинное плечо? Возьмем хромосомы формы Х. Пересечение нитей ДНК может происходить строго посередине (Х), а может происходить и не центрально. Когда такое пересечение нитей ДНК происходит не центрально, то относительно точки перекреста одни концы длиннее, другие, соответственно, короче. Такие длинные концы принято называть длинным плечом хромосомы, а короткие – соответственно – коротким плечом. У хромосом формы Y большую часть занимают длинные плечи, а короткие совсем небольшие (на схематичном изображении они даже не указываются).

Размер хромосом колеблется: самыми крупными являются хромосомы пар №1 и №3, самыми маленькими хромосомы пар № 17, №19.

Помимо форм и размеров хромосомы различаются по выполняемым функциям. Из 23 пар, 22 пары являются соматическими и 1 пара – половые. Что это значит? Соматические хромосомы определяют все внешние признаки индивидуума, особенности его поведенческих реакций, наследственный психотип, то есть все черты и особенности каждого конкретного человека. А пара половых хромосом определяет пол человека: мужчина или женщина. Существует две разновидности половых хромосом человека – это Х (икс) и У (игрек). Если они сочетаются как ХХ (икс - икс) – это женщина, а если ХУ (икс - игрек) – перед нами мужчина.

Наследственные болезни и повреждения хромосом

Однако случаются «поломки» генома, тогда у людей выявляются генетические заболевания. Например, когда в 21 паре хромосом вместо двух присутствует три хромосомы, человек рождается с синдромом Дауна.

Существует множество более мелких «поломок» генетического материала, которые не ведут к возникновению болезни, а наоборот, придают хорошие свойства. Все «поломки» генетического материала называются мутациями. Мутации, ведущие к болезням или ухудшению свойств организма, считают отрицательными, а мутации, ведущие к образованию новых полезных свойств, считают положительными.

Однако, применительно к большинству болезней, которыми сегодня страдают люди, передается по наследству не заболевание, а лишь предрасположенность. Например, у отца ребенка сахар усваивается медленно. Это не означает, что ребенок родится с сахарным диабетом , но у ребенка будет иметься предрасположенность. Это означает, если ребенок будет злоупотреблять сладостями и мучными изделиями, то у него разовьется сахарный диабет.

На сегодняшний день развивается так называемая предикативная медицина. В рамках данной медицинской практики у человека выявляются предрасположенности (на основе выявления соответствующих генов), а затем ему даются рекомендации - какой диеты придерживаться, как правильно чередовать режим труда и отдыха, чтобы не заболеть.

Как прочитать информацию, закодированную в ДНК?

А как же можно прочитать информацию, содержащуюся в ДНК? Как использует ее собственный организм? Сама ДНК представляет собой некую матрицу, но не простую, а закодированную. Чтобы прочесть информацию с матрицы ДНК, она сначала переносится на специальный переносчик – РНК. РНК – это химически рибонуклеиновая кислота. Отличается от ДНК тем, что может проходить через мембрану ядра в клетку, а ДНК лишена такой способности (она может находиться только в ядре). Закодированная информация же используется в самой клетке. Итак, РНК – это переносчик кодированной информации из ядра в клетку.

Как происходит синтез РНК, как при помощи РНК синтезируется белок?

Нити ДНК, с которых нужно «считать» информацию, раскручиваются, к ним подходит специальный фермент – «строитель» и синтезирует параллельно нити ДНК комплементарную цепочку РНК. Молекула РНК также состоит из 4 видов нуклеотидов – аденина (А), урацила (У), гуанина (Г) и цитозина (Ц). При этом комплементарными являются следующие пары: аденин – урацил, гуанин – цитозин. Как видно, в отличие от ДНК, в РНК используется урацил вместо тимина. То есть фермент-«строитель» работает следующим образом: если в нити ДНК он видит А, то к нити РНК присоединяет У, если Г – то присоединяет Ц и т.д. Таким образом, с каждого активного гена при транскрипции формируется шаблон – копия РНК, способная проходить через мембрану ядра.

Как происходит синтез белка закодированного определенным геном?

Покинув ядро, РНК попадает в цитоплазму. Уже в цитоплазме РНК может быть, как матрица встроена в специальные ферментные системы (рибосомы), которые могут синтезировать, руководствуясь информацией РНК соответствующую последовательность аминокислот белка. Как известно, молекула белка состоит из аминокислот. Как же рибосоме удается узнать, какую именно аминокислоту надо присоединить к растущей белковой цепи? Делается это на основе триплетного кода. Триплетный код означает, что последовательность в три нуклеотида цепочки РНК (триплет, например, ГГУ) кодируют одну аминокислоту (в данном случае глицин). Каждую аминокислоту кодирует определенный триплет. И так, рибосома «прочитывает» триплет, определяет какую аминокислоту надо присоединить следующей по мере считывания информации в РНК. Когда цепочка аминокислот сформирована, она принимает определенную пространственную форму и становится белком, способным осуществлять возложенные на него ферментные, строительные, гормональные и другие функции.

Белок для любого живого организма является продуктом гена. Именно белками определяются все разнообразные свойства, качества и внешние проявления генов.

На сегодняшний день двойная спираль ДНК — один из самых известных и популярных научных символов. Вся информация об организме — абсолютно вся — его предки, внешние и внутренние признаки и даже те заболевания, которые перенес организм, «записаны» в молекуле ДНК .

Но так было не всегда. Еще в 1920 г (это самое начало ХХ века!) ученые стали эксперимнтально доказывать существование этой молекулы.

Но на данный момент заслуги по определению и выделению ДНК относят к двум ученым — . Запомните эти две фамилии — они часто встречаются в вопросах ЕГЭ.

  • Аденин А;
  • Тимин Т;
  • Цитозин Ц;
  • Гуанин Г.

Эти основания входят в состав каждой спирали. А вот друг с другом эти полосочки держатся за счет межмолекулярных, водородных связей , которые возникают строго между определенными участками!


Принцип комплементарности

Каждое основание на одной из цепей связывается с одним определённым основанием на второй цепи.

Аденин образует связи только с тимином

цитозин - с гуанином .

А—-Т

Ц —- Г

В тестах ЕГЭ часто приходиться иметь дело с таким типом задач:

По принципу комплементарности у нас А связан с Т, Ц — с Г:

1 — я цепь ДНК: ГГГЦАТААЦГЦТ…

1 — я цепь ДНК: ЦЦЦГТАТТГЦГА

Молекула ДНК имеет форму двойной спирали, и ее воспроизведение основано на том, что каждая цепь двойной спирали служит матрицей для сборки новых молекул.

При делении клетки происходит самовоспроизведение ДНК — репликация — каждая дочерняя клетка получает копию материнской ДНК. Это и есть основная функция этой нуклеиновой кислоты — передача наследственной информации .

Репликация ДНК происходит в период интерфазы перед каждым . Материнская молекула ДНК (количество ДНК в клетке равно 2с) под действием фермента ДНК — полимеразы раскручивается с одного конца, а затем из свободных нуклеотидов по принципу комплементарности на цепях строятся дочерние полинуклеотидные цепи.

В результате матричных реакций возникают две одинаковые по нуклеотидному составу дочерние молекулы ДНК, в которых одна из цепей старая, а другая — новая.

Количество ДНК в клетке становится равным 4с = 2с + 2с

Репликация ДНК

Этапы процесса репликции:


Скорость репликации молекулы ДНК — 750 нуклеотидов в секунду!

Конечно, в процессе появляются ошибки, но их количество ничтожно мало…

Денатурация характерна не только для , но и для молекулы ДНК. Молекула распадается на части и теряет свои свойства.
Причинами денатурации все те же: нагревание, соли тяжелых металлов, кислоты, щелочи, ионизирующее излучение.